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ABSTRACT

This paper solves the problem of sound transmission through
a system of two infinite concentric cylindrical sandwich
shells.  The shells are surrounded by external and internal
fluid media and there is fluid (air) in the annular space
between them.  An oblique plane sound wave is incident upon
the surface of the outer shell.  A uniform flow is moving with
a constant velocity in the external fluid medium.  Classical
thin shell theory is applied to the inner shell and first-order
shear deformation theory is applied to the outer shell.  A
closed form for transmission loss is derived based on modal
analysis.  Investigations have been made for the impedance of
both shells and the transmission loss through the shells from
the exterior into the interior.  Results are compared for
double sandwich shells and single sandwich shells.  This
study shows that (1) the impedance of the inner shell is much
smaller than that of the outer shell so that the transmission
loss is almost the same in both the annular space and the
interior cavity of the shells; (2) the two concentric sandwich
shells can produce an appreciable increase of transmission
loss over single sandwich shells especially in the high
frequency range;  and (3) design guidelines may be derived
with respect to the noise reduction requirement and the
pressure in the annular space at a mid-frequency range.

NOMENCLATURE

a ,b, : thickness and width of intrinsic cell material of
honeycomb core

c : sound speed in fluid
D : displacement component along radial direction
E, G, µ : elastic constants of the face sheets and honeycomb

core of sandwich shell
f : frequency and mode dependent function
h, R : thickness and radius of sandwich shells
H, J : Hankel and Bessel functions
i : √-1
k : wave number
L : differential operator
M : Mach number
n : mode number
p : pressure in the external, annular, and internal

cavities
r, z, θ : cylindrical coordinates along radial, axial, and

circumferential, directions
S : cross area for annular or interior cavity
t : time
TL : transmission loss

u, v, w : displacement components along axial,
circumferential, and radial directions

V : velocity of the external flow
W : power flow per unit length
x, y, z  : Cartesian coordinates
Z : modal impedance
γ : incident angle of the plane sound wave
∇ : gradient
ε : Neumann factor
ζ : local coordinate along thickness direction of shell
ρ : mass density of fluid and shell
ψ : rotation of the shell
ω : angular or rotational frequency

1. INTRODUCTION

Sound transmission through double walls separated by an
airgap has been investigated by many researchers [1 to 5, 7,
10 to 14, 16, 18, 19, 22 to 24] since the construction will
produce both noise attenuation and thermal insulation.
These investigations have shown that double walls can
increase transmission loss over a single wall.  Among these
studies, most of them assumed the double walls are flat with
absorbent materials.  Only a few focused on the study of
double walls consisting of two concentric cylindrical shells.
However, those investigations are mostly limited to the study
of two isotropic shells and only thin shell theory is applied
or to the use of the finite element method for composite double
wall cylinders.  Sandwich structures consisting of
lightweight, flexible cores between relatively stiff skins can
be used to increase the sound insulation [4, 6, 11, 20, 21].  The
authors have studied sound transmission through single
cylindrical sandwich shells with honeycomb core
analytically.  Results show that the sandwich shells can offer
advantage over isotropic shells for noise reduction,
especially at high frequencies [20].  In the aerospace and
marine applications, cylindrical shells often occur as part of
double shell constructions for the purpose of noise
insulation, streamlining requirements, thermal shield, or
interior finish requirements.  The outer shell represents the
exterior skin of an aircraft fuselage and the inner shell
represents the trim panel in the aerospace application.  In the
marine application, the outer shell is thin to satisfy
streamline requirements while the inner shell is thicker to
withstand underwater pressures.



The objective of this paper is to study noise transmission
through a system of two infinite concentric cylindrical
sandwich shells excited by an incident oblique plane sound
wave analytically.  The shells are surrounded with fluids
and there is air in the annular space between them.  A uniform
flow is moving with a constant velocity in the external fluid
medium.  Each of the sandwich shells is made of honeycomb
core and face sheets that may be isotropic, orthotropic, or
laminated fiber-reinforced composite materials.  In this paper,
we will focus on the aerospace application in which the
outer shell is a thick shell while the inner is thin.  The effect
of the shear deformation and rotation can not be neglected for
a thick shell [15, 17, 20].  Therefore, the first-order shear
deformation theory is applied for the outer shell.  For the
inner shell, the classical thin shell theory is used.  The
concept under study is that a plane acoustic wave is incident
and is reflected by the elastic shell in the exterior space,
standing waves that consist of transmitted and reflected
waves exist in the annular space, and transmitted waves
exist in the interior cavity.  To develop the solution, modal
analysis is used to solve the coupled equations
simultaneously including the convective wave equation for
the external fluid, the wave equation for the annular and
internal fluids, and the vibration equation for both outer and
inner shells.  A closed form expression for the transmission
loss (TL) is derived.  Calculations  have been carried out for
the impedances of both shells and the TL through the shells.
Finally, comparisons of the TL between the double sandwich
shells and single sandwich shells are made.

2. MATHEMATICAL ANALYSIS

2.1 Governing equations

Figure 1 shows a schematic of two infinite concentric
cylindrical sandwich shells with radii R1 and R2 and wall
thicknesses h1 and h2 for the outer and inner shells,
respectively.  The shells are surrounded by the external fluid
and the internal fluid including that in the  airgap (annular
fluid) between them.  The mass density and sound speed for
the external, annular, and internal fluid media are {ρ1, c1},
{ρ2, c2} and {ρ3, c3}.  An oblique plane sound wave p I is
incident upon the system from the exterior of the shells with
incident angle γ1 (measured from the axial coordinate z).  An
airflow in the external fluid medium is moving with a
constant velocity V along z direction.  Without loss of
generality, the angles of the incident wave with respect to the
axes x and y are 0 and π/2, respectively.

In the exterior space, the pressure p1 = p I + p1
R, where p I is the

incident wave and p1
R is the reflected wave, satisfies the

convected wave equation

c1
2∇

2
 (pI + p1

R)  + 
∂
∂t

 + V.∇
2

 (p I + p1
R)  =  0 (1)

where ∇  the gradient and ∇
2
= ∇ .∇  the Laplacian operator.

The pressures here and in the following represent the
perturbation pressures.

In the annular space, the pressure p2 = p2
T + p2

R, where p2
T is the

transmitted wave and p2
R is the reflected wave, satisfies the

acoustic wave equation

c2
2∇

2
 (p2

T + p2
R) + 

∂2(p2
T + p2

R)

∂t 2
   =  0 (2)

In the interior cavity, the pressure p3 = p3
T, where p3

T is
transmitted wave, satisfies the acoustic wave equation

c3
2∇

2
 p3

T + 
∂2p3

T

∂t 2
   =  0 (3)

It is assumed here that the interior cavity inside the shells is
totally absorptive.  This indicates there exists only inward-
traveling wave.

For the shells, let {ui
0, v i

0, wi
0} be the displacement components

at the middle surface of the shell in the axial, circumferential,
radial directions, where the subscript i denotes the variables
associated with the outer shell (i = 1) and the inner shell (i =
2).  Let {ψz, ψθ} be the rotations of the normal to the
undeformed midsurface of the outer shell, where θ is the angle
in the circumferential direction.  The governing shell
equations for both the thin shell and the first-order shell
theories have been shown in the authors' previous study [20].
Eliminating u1

0, v1
0, ψz, and ψθ for the outer shell and u2

0 and v2
0

for the inner shell, one can obtain differential equations in
terms of displacement components in the radial direction w1

0

and w2
0  

L1(w1
0)  =  p12  =  p2

T + p2
R – (p1

I + p1
R) (4)

L2(w2
0)  =  p23  =  p3

T – (p2
T + p2

R) (5)

where L1 and L2 are the differential operators.

At the interfaces between the shells and fluids, the following
equations must be satisfied

∂(p I + p1
R)

∂r |r = R1

  =  ρ1  
∂
∂t

 + V.∇
2

w1 (6)

∂(p2
T + p2

R)

∂r |r = R1

  =  ρ2 
∂2w1

∂t 2
(7)

∂(p2
T + p2

R)

∂r |r = R2

  =  ρ2 
∂2w2

∂t 2
 (8)

∂p3
T

∂r |r = R2

  =  ρ3 
∂2w2

∂t 2
(9)

where r is the radial coordinate of the shells.

2.2 Transmission loss

For a harmonic incident wave, assume that p I can be
expanded as

p I(r, z, θ, t)  =  p0.  ∑
n = 0

∞
 εn (–i)n Jn(k1rr)*

                                        cos[nθ] exp[i(ωt –k1zz)]
(10)

with p0 is the amplitude of the incident wave; n  the number of
the circumferential mode; ε0 = 1 and εn = 2 otherwise; Jn

Bessel function of the first kind of order n; ω annular or
rotational frequency; and

k1r  =  k1 sin(γ1) ,   k1z  =  k1 cos(γ1) (11)

where k1 = (ω/c1)/[1+M cos(γ1)] and M = V/c1.



Following the procedures presented in the authors' previous
paper [20], one can expand the pressures p1

R, p2
T, p2

R, and p3
T

which satisfy Eqs. (1) to (3) and displacements w1
0 and w2

0 in
terms of cos[nθ] exp[i(ωt –k1zz)].  Then substitute these results
into Eqs. (4) to (9) to solve for unknowns coefficients of p1

R,
p2

T, p2
R, p3

T, w1
0, and w2

0.  The derivation and the closed form
solutions are given in the appendix.   

In order to define the transmission loss, consider the
transmitted power flow per unit length along the axial
direction of the shells in the interior cavity inside both shells,
W T, which is given by the following

W T  =  1
2

 Re { 
S2

(p3
T w2

0*)|r = R2 dS } (12)

where S2 = 2πR2 and  Re{.} and the superscript * represent
real part and the complex conjugate of the argument,
respectively.  Substitution of Eqs. (A10) and (A12) for p3

T and
w2

0 into above equation yields an expression for the
components of W T

Wn
T  =  

2 p0
2

ρ3 εn ω
  f 2 (13)

Here, |.| is the absolute value of the argument and f is a
frequency and modal dependent function,

f  =   
ρ3

ρ1

k1r 
k3r
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s+Z11
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R )(Z2
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                 Hn
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2′(k2r R2)]

(15)

where primes represent the derivative, Jn are Bessel functions
of the first kind of order n, and Hn

1 and Hn
2 are Hankel

functions of the first  and second kinds of order n,
respectively,

k2  =  ω/c2 ,   k2z  =  k1z ,   k2r  =  k2
2 – k2z

2 (16)
k3  =  ω/c3 ,   k3z  =  k1z ,   k3r  =  k3

2 – k3z
2 (17)
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In above equations, Z1
s and Z2

s  are the modal impedances of
the outer and inner shells defined by

Z1
s  =  p12/w1

0
 ,    Z2

s  =  p23/w2
0
 (23)

The transmission loss is, therefore, defined by

TL  =  –10 log10  ∑
n = 0

∞
 Wn

T

W I
 (24)

where W I is the incident power flow per unit length along the
axial direction of the shells

W I  =  
R1 cos(γ1)

ρ1 c1
 p0

2 (25)

Then, a closed form for the transmission loss can be obtained
by substituting Eqs. (13) and (25) into Eq. (24)

TL  =  –10 log10 ∑
n = 0

∞
 

2ρ1 c1

 εn ρ3 ω  R1 cos(γ1) 
  f 2 (26)

When R1 = R2, the expression can be decomposed into the TL
for single shell [20] with shell modal impedance Z1

s+ Z2
s.

2.3 Equivalent constants of the honeycomb core

To calculate the equivalent mass density and elastic material
constants of the honeycomb core, assume that the core is
constructed from a regular hexagonal structure.  The
equivalent mass density is given by [8]

ρ  =  ρs 2

3
 a
b

(27)

where ρ s is the intrinsic cell wall material mass density of the
honeycomb core and a and b are its thickness and width,
respectively, as shown in Fig. 1.  The in-plane elastic

constants of the honeycomb, Ez, Eθ, µzζ, and µθζ (ζ is the local
coordinate along the radial direction of the considered shell)
are also given by [8]  

 Ez  =  Eθ  =  Es 4

3
 a

3

b 3
 ,   µzζ  =  µθζ  =  1 (28)

where Es is the intrinsic Young's modulus.

Since the outer shell is a thick shell, the transverse
mechanical properties need to be known.  The paper [9]
presented a formula for the transverse shear modula of a
honeycomb core of a regular hexagonal structure

Gzζ  =  Gθζ  =  3  Gs a
b

(29)

where Gs is the intrinsic shear modulus.  The third shear
modulus in this study is defined by

 Gξθ  =  Es

3
 a

3

b 3
 (30)

3. NUMERICAL ANALYSIS

3.1 Given constants

Numerical studies will illustrate the analysis presented here
by considering a typical aircraft fuselage made from two
concentric cylindrical sandwich shells.  The outer shell
consists of titanium face sheets and titanium honeycomb core
and the inner shell consists of four layer laminated cross-ply
graphite/epoxy face sheets and aluminum honeycomb core.
The fiber orientation for the inner shell is {900, 00, 900, 00,
honeycomb core, 00, 900, 00, 900} with axial direction
measured from the exterior surface of the inner shell.  The
radius and wall thickness are R1 = 1.88m and h1 = 5.079cm
for the outer shell and R2 = 1.84m and h2 = 0.635cm for the
inner shell.  The face sheets are made from the same material



and with the same thickness for each shell.  The thickness
ratio of the core and the total for each shell is 0.84.  The
structural loss factor is η = 0.01.  The material properties of
the face sheet are given in Table. 1, where α  is the fiber
direction and β is the direction perpendicular to the fiber.
The equivalent material properties of honeycomb core can be
obtained by substitution of a/b = 0.1 and the material
properties of the intrinsic core materials, titanium (given in
Table. 1) and aluminum (ρ s = 2750kg/m3, E = 72GPa, µ = 0.3)
into Eqs. (27) to (30), as given in Table. 2.

Table 1.   Material properties of the face sheet of the
sandwich shell.

titanium
mass density:        ρ1

s (kg/m3) 4510
elastic modulus:   E (GPa) 120.02

Poison's ratio:      µ  0.361

graphite/epoxy layer
mass density:        ρ2

s (kg/m3) 1580

elastic modulus: Eα (GPa) 181
elastic modulus: Eβ = Ez  (GPa) 10.3
shear modulus:  Gαβ = Gzα (GPa) 7.17
shear modulus:  Gβz (GPa) 2.87
Poison's ratio:   µβα 0.33
Poison's ratio:   µzα = µzβ 0.28

Table 2.   Equivalent material properties of the honeycomb
core.

titanium honeycomb core
mass density:      ρ1

s
 (kg/m3) 520.77

elastic modulus: Ez = Eθ (GPa) 0.277
elastic modulus: Eζ (GPa) 120.02
shear modulus:  Gzζ =Gθζ (GPa) 2.545
shear modulus:  Gzθ (GPa) 0.069
Poison's ratio:   µzθ 1
Poison's ratio:   µzζ = µθζ 0.361

aluminum honeycomb core
mass density:       ρ2

s (kg/m3) 317.54

elastic modulus: Ez = Eθ (GPa) 0.166
elastic modulus: Eζ (GPa) 72
shear modulus:  Gzζ =Gθζ (GPa) 1.599
shear modulus:  Gzθ (GPa) 0.042
Poison's ratio:    µzθ 1
Poison's ratio:    µzζ = µθζ 0.3

The properties of the fluids are given in the followings:  The
aircraft is in cruising flight at 25,000ft altitude (ρ1 =
0.5489kg/m3, c1 = 309.966m/s) with interior pressurized to
10,000ft altitude (ρ3 = 0.9041kg/m3, c3 = 328.558m/s).  The
mass density and sound speed of the fluid in the annular
space between two shells are the same as that in the interior
cavity.  Three flight conditions encompassing subsonic,
transonic, and supersonic conditions with Mach numbers M
= 0.5, 1.0, and 2.0 are considered.  The incident angle of the
oblique plane sound wave is γ1 = 300.

3.2 Results

Since the structural impedance of each shell Z1
s and Z2

s plays
an important role in calculating the TL, figure 2 shows the
modulus of the shell impedance versus frequency for M = 0.5,
1.0, and 2.0.  For the outer shell, the resonances do not
influence the impedance for M = 0.5.  However, the
resonances  will result in peaks in the impedance for M = 2.0
at low frequencies, for instance, less than 1.5kHz.  With an
increase of the Mach numbers, the effect of the resonances on
the impedance becomes significance.  For the inner shell, the
impedance is strongly affected by the resonances for both
subsonic and supersonic Mach numbers at low frequencies.
The minima in the impedance at the coincidence are shown in
the inner shell and they are shifted upwards with increasing
Mach number.  The minima can not be observed in the outer
shell for M = 0.5 and 1.0.  Comparison of (a) and (b) reveals
that the impedance is much larger in the outer shell and than
in the inner shell.  This illustrates that the outer shell
transmits much less incident energy than the inner shell so
that noise will be reduced largely after it transmits the outer
shell.

Figure 3 shows the TL in the annular space and interior
cavity of the shells.  The formula for the TL in the cavity is
given by Eq. (26) while in the space it is defined by

TL  =  –10 log10  W
T

W I
 (31)

The transmitted power flow W
T
 is defined by

W
T
  =  1

2
 Re {

S1
[(p2

T + p2
R)w1

0*]|r = R1 dS} (32)

in which S1 = 2πR1.  The closed form solutions for p2
T, p2

R, and
w1

0 are given in the appendix.  The power flow can be
obtained by substituting the expressions of p2

T, p2
R, and w1

0 into
above equations.

Major minima in the TL corresponding to coincidence
frequencies are shown in these figures.  These minima are
shifted upwards with increasing the Mach numbers.  The
effect of the shell resonances on the TL can be observed only
for M = 1.0 and 2.0.  The transmission loss is almost the same
in the interior cavity and annular space at low frequencies.
This is what we have expected because the impedance of the
inner shell is much smaller than that of the outer shell, as
shown in Fig. 2.

Figure 4 shows a comparison of the TL between the double
sandwich shells and single sandwich shells. The single
sandwich shell consists of either the outer shell or the inner
shell.  At low frequencies, not much difference exists for the
TL between the double sandwich shells and single outer
sandwich shell.  However, with increasing frequencies, the
advantage that the double sandwich shells can offer more
noise reduction than single shells is revealed except near
coincidence.  Double sandwich shells can produce an
appreciable increase of the TL over single sandwich shells at
high frequencies.

The effect of the pressure of the fluid in the annular space
between the shells on the TL is shown in Fig. 5.  The space is
pressurized to 10,000ft, 15,000ft (ρ2 = 0.7708kg/m3, c2 =
322.463m/s), 20,000ft (ρ2 = 0.6523kg/m3, c2 = 316.062m/s),



or unpressurized at 25,000ft.  The interior cavity is
pressurized to 10,000ft in all cases.  Results demonstrate that
the variation of the pressures will lead to the difference in the
TL within 2dB when the frequency is less about 160Hz.  The
difference will increase gradually to 12dB in the mid-
frequency range, i. e., between 160Hz and 500Hz, so that a
criterion can be made according to noise reduction
requirement by selecting the pressure in the annular space at
this range.  When the frequency is greater than 500Hz, the
difference of the TL is within 6dB except near coincidence.
The minima in the TL are shifted upwards slightly with the
decrease of the mass densities.

4. CONCLUDING REMARKS

This paper develops a mathematical model for prediction of
sound transmission through two infinite concentric
cylindrical sandwich shells excited by an incoming oblique
plane sound wave.  The shells are surrounded by fluid media
and there is air in the annular space between them.  Each
sandwich shell is made of the honeycomb core and face sheets
which can be isotropic, orthotropic, or laminated fiber-
reinforce composite materials.  The first-order shear
deformation theory is applied for the outer shell and the
classical thin shell theory is applied for the inner shell.  A
closed form for the transmission loss is derived including the
effect of the external flow based the modal analysis.  The
following conclusions can be drawn:

(i). The transmission loss is almost the same in both the
annular space and the interior cavity of the shells except near
the coincidence since the impedance of the inner shell is much
smaller than that of the outer shell.

(ii). The two concentric sandwich shells can offer
appreciable advantage over the single outer sandwich shell
and the single inner sandwich shell for noise reductions
especially at high frequencies.

(iii).  The transmission loss is not sensitive to the change of
the pressure in the annular space in the low frequency range.
However, in the mid-frequency range, an enhancement of the
TL is achieved by selecting the pressure in the annular space.
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APPENDIX:  DERIVATION OF THE SOLUTIONS

To develop the solutions, assume the pressures p1
R, p2

T, p2
R, and

p3
T which satisfy Eqs. (1) to (3) as

p1
R(r, z, θ, t)  =  ∑

n = 0

∞
 p1n

R  Hn
2(k1rr) cos[nθ] exp[i(ωt –k1zz)] (A1)

p2
T(r, z, θ, t)  =  ∑

n = 0

∞
 p2n

T  Hn
1(k2rr) cos[nθ] exp[i(ωt –k1zz)] (A2)

p2
R(r, z, θ, t)  =  ∑

n = 0

∞
 p2n

T  Hn
2(k2rr) cos[nθ] exp[i(ωt –k1zz)] (A3)

p3
T(r, z, θ, t)  =  ∑

n = 0

∞
 p3n

T  Hn
1(k3rr) cos[nθ] exp[i(ωt –k1zz)] (A4)

where p1n
R , p2n

R , p2n
T , and p3n

T  are yet-to-be-determined complex
amplitude factors.

The displacement components w1
0, and w2

0 are assumed as

w1
0(z, θ, t)     =  ∑

n = 0

∞
  w1n

0  cos[nθ] exp[i(ωt –k1zz)] (A5)

w2
0(z, θ, t)     =   ∑

n = 0

∞
  w2n

0  cos[nθ] exp[i(ωt –k1zz)] (A6)

where w1n
0  and w2n

0  are unknown complex amplitude factors.
Substitution of Eqs. (A1) to (A6) into Eqs. (4) to (9) yields the
solutions for p1n

R , p2n
R , p2n

T , p3n
T , w1n

0  and w2n
0

p1n
R   =  – 

Jn(k1rR1)

Hn
2(k1rR1)

×∆1

∆
 p0 εn (-i)n (A7)

p2n
T   =  – 

iρ2ω
k2r

× Jn
′(k1rR1)

Hn
1′(k2rR1)

×Hn
2(k1rR1)

Hn
2′(k1rR1)

×∆2

∆
 p0 εn (-i)n (A8)

p2n
R   =    

iρ2ω
k2r

× Jn
′(k1rR1)

Hn
1′(k2rR1)

×Hn
2(k1rR1)

Hn
2′(k1rR1)

×Hn
1′(k2rR2)

Hn
2′(k2rR2)

×∆3

∆
×

 p0 εn (-i)n
(A9)

p3n
T   =    

ρ3k1r

ρ1k3r

× ω2

k1
2c1

2
× Jn

′(k1rR1)

Hn
1′(k3rR2)

×Hn
1′(k2rR2)

Hn
1′(k2rR1)

×∆4

∆
 p0 εn (-i)n (A10)

w1n
0   =  – i

ω
×Jn

′(k1rR1) Hn
1′(k1rR1)

Hn
2′(k1rR1)

×∆5

∆
 p0 εn (-i)n (A11)

w2n
0   =    k1r

ρ1ω2
× ω2

k1
2c1

2
×Jn

′(k1rR1) Hn
1′(k2rR2)

Hn
1′(k2rR1)

×∆6

∆
 p0 εn (-i)n (A12)

where ∆ are given in the text and
∆1= (Z1

s+Z21
T -Z11

I )(Z2
s+Z32

T +Z22
R )–(Z1

s-Z11
I –Z21

R )(Z2
s+Z32

T –Z22
T )×

                 Hn
1′(k2r R2) Hn

2′(k2r R1)/[Hn
1′(k2r R1)Hn

2′(k2r R2)]
(A13)

∆2 = (1+Z11
I /Z11

R )(Z2
s+Z32

T +Z22
R ) (A14)

∆3 = (1+Z11
I /Z11

R )(Z2
s+Z32

T –Z22
T ) (A15)

∆4 = (1+Z11
I /Z11

R )(Z22
T +Z22

R )Z11
R (A16)

∆5 = (1+Z11
I /Z11

R ){(Z2
s+Z32

T +Z22
R )–(Z2

s+Z32
T –Z22

T )×
                 Hn

1′(k2r R2) Hn
2′(k2r R1)/[Hn

1′(k2r R1)Hn
2′(k2r R2)]}

(A17)

∆6 = (1+Z11
I /Z11

R )(Z22
T +Z22

R )Z11
R (A18)
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Figure 1.  Schamatic of two concentric shells and their
geometry construction.
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Figure 2.  Modulus of impedance of the sandwich shells.
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Figure 3.  The TL at annular space and interior cavity:
(a)  M = 0.5;  (b)  M = 1.0;  (c)  M = 2.0.
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Figure 4  A comparison of the TL between double shells and
single shells:  (a)  M = 0.5;  (b)  M = 1.0;  (c)  M = 2.0.
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Figure 5.  The effect of the annular pressure on the TL:
(a)  M = 0.5;  (b)  M = 1.0;  (c)  M = 2.0.


